lunes, 7 de noviembre de 2011

Leyes de Faraday (Lo mismo pero diferente)


Leyes de Faraday o de la Electrólisis

Leyes de la Electrólisis

Los siguientes conceptos son referidos a la corriente eléctrica necesarios para comprender el significado de las leyes de Faraday:

1) La cantidad de electrones (electricidad) que circulan por un conductor se mide en Coulomb.

q = carga ® [q] = coulomb

2) La intensidad de la corriente (caudal de electrones) expresa la cantidad de electricidad que circula por un conductor por unidad de tiempo. La intensidad de la corriente se mide en Amperes.

i = q/t Þ q = i.t ® [i] = A

3) Cuando una fuente fuerza a los electrones a circular por un conductor, se presenta una resistencia al flujo de corriente y se produce una caída de potencial. La resistencia eléctrica se mide en Ohms,y la diferencia de potencial en Voltios.

E = i.R ® [E] = V y [R] = ohm

Primera Ley de Faraday: La masa de un elemento depositada en un electrodo es proporcional a la cantidad de electricidad que pasa a través de la solución del electrólito o del electrólito fundido.

m = Const.i.t

Donde const es una constante que depende del catión y se denomina equivalente electroquímico (se verá más adelante).

Cuando se realiza, por ejemplo, la electrólisis de una solución de sulfato cúprico (CuSO4) sucede lo siguiente







Figura 4

Cu2SO4 + H2O ® Cu++ + SO4= + H+ + HO-

Al aplicar una diferencia de potencial a los electrodos, el ion cobre se mueve hacia el cátodo, adquiere dos electrones y se deposita en el electrodo como elemento cobre. El ion sulfato, al descargarse en el electrodo positivo, es inestable y se combina con el agua de la disolución formando ácido sulfúrico y oxígeno.

2Cu++ ® 2Cu ° - 4e-

2HO- ® O2 + 2H+ + 4e-

2Cu2SO4 + 2H2O ® 2Cu ° + 2H2SO4 + O2

Cuando circula más corriente (más coulombios) más cobre se deposita, pues más electrones han circulado permitiendo que más iones cobre (Cu++) se conviertan en elemento cobre (Cu°).

Segunda Ley de Faraday: Las masas de elementos que se depositan en los electrodos son proporcionales a los equivalentes químicos.

Recordemos que el equivalente químico de un elemento es el cociente entre el peso atómico gramo de ese elemento y su valencia:

Eq = Pa/V

Para probar esta segunda ley se hace pasar la misma cantidad de electricidad a través de varias cubas con diferentes soluciones salinas, como indica la figura. Midiendo la cantidad de plata y de cobre depositados en el cátodo se llega a la comprobación de la ley:

m Ag+ / m Cu++ = Eq Ag/ Eq Cu

m Ag+ / m Cu++ = 107,8/31,75

O sea que las masas de plata y de cobre depositadas en los electrodos se hallan en relación de: 107,8 /31,75.



Número de Faraday: Para depositar el equivalente químico de cualquier elemento se necesita la misma cantidad de electricidad. La constante o número de Faraday (F) es de 96500 coulomb (96494).

Por ejemplo, para depositar: 1,008 gr de H+, 107,8 gr de Ag+, 31.75 gr de Cu++ o 63.5 gr de Cu+ son necesarios 96500 coulomb.

Vale aclarar que: 96500 coulomb = carga de 6,02.1023 electrones, de lo que se deduce que la carga de un electrón es 1,6 .10-19 coulomb.

Equivalente electroquímico: Se llama equivalente electroquímico # a la masa de un elemento depositada, durante la electrólisis, por la carga de un coulomb.

ζ = Eq/F

En todos los casos, la cantidad de material que se deposita en cada electrodo al pasar la corriente por un electrólito sigue las leyes de Faraday.

Todos los cambios químicos implican una reagrupación o reajuste de los electrones en las sustancias que reaccionan; por eso puede decirse que dichos cambios son de carácter eléctrico. Para producir una corriente eléctrica a partir de una reacción química, es necesario tener un oxidante, es decir, una sustancia que gane electrones fácilmente, y un reductor, es decir, una sustancia que pierda electrones fácilmente.

No hay comentarios:

Publicar un comentario